Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Front Immunol ; 15: 1330373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596679

RESUMO

Introduction: Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods: To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results: I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion: These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.


Assuntos
Indóis , Monócitos , Síndrome do Desconforto Respiratório , Camundongos , Animais , Monócitos/metabolismo , Lipopolissacarídeos/farmacologia , Neutrófilos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo
2.
Front Immunol ; 15: 1355315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558807

RESUMO

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Assuntos
Síndrome de Ativação Macrofágica , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de IgG/genética , Síndrome de Ativação Macrofágica/genética , Fagocitose/genética , Interleucina-12
4.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352330

RESUMO

Background: Primary immunodeficiencies are heritable defects in immune system function. Antibody deficiency is the most common form of primary immunodeficiency in humans, can be caused by abnormalities in both the development and activation of B cells, and may result from B-cell-intrinsic defects or defective responses by other cells relevant to humoral immunity. Inflammatory gastrointestinal complications are commonly observed in antibody-deficient patients, but the underlying immune mechanisms driving this are largely undefined. Methods: In this study, several mouse strains reflecting a spectrum of primary antibody deficiency (IgA -/- , Aicda -/- , CD19 -/- and J H -/- ) were used to generate a functional small-bowel-specific cellular atlas using a novel high-parameter flow cytometry approach that allows for the enumeration of 59 unique cell subsets. Using this cellular atlas, we generated a direct and quantifiable estimate of immune dysregulation. This estimate was then used to identify specific immune factors most predictive of the severity of inflammatory disease of the small bowel (small bowel enteropathy). Results: Results from our experiments indicate that the severity of primary antibody deficiency positively correlates with the degree of immune dysregulation that can be expected to develop in an individual. In the SI of mice, immune dysregulation is primarily explained by defective homeostatic responses in T cell and invariant natural killer-like T (iNKT) cell subsets. These defects are strongly correlated with abnormalities in the balance between protein (MHCII-mediated) versus lipid (CD1d-mediated) antigen presentation by intestinal epithelial cells (IECs) and intestinal stem cells (ISCs), respectively. Conclusions: Multivariate statistical approaches can be used to obtain quantifiable estimates of immune dysregulation based on high-parameter flow cytometry readouts of immune function. Using one such estimate, we reveal a previously unrecognized tradeoff between iNKT cell activation and type 1 immunity that underlies disease in the small bowel. The balance between protein/lipid antigen presentation by ISCs may play a crucial role in regulating this balance and thereby suppressing inflammatory disease in the small bowel.

5.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397081

RESUMO

We previously reported that an aryl hydrocarbon receptor (AhR) ligand, indole-3-carbinol (I3C), was effective at reducing colitis severity through immune cell-mediated interleukin-22 (IL-22) production. Intestinal epithelial cells (IECs) are also involved in regulating colitis, so we investigated their AhR-mediated mechanisms in the current report. A transcriptome analysis of IECs in wildtype (WT) mice revealed that during colitis, I3C regulated select mucin proteins, which could be attributed to goblet cell development. To address this, experiments under in vivo colitis (mice) or in vitro colon organoid conditions were undertaken to determine how select mucin proteins were altered in the absence or presence of AhR in IECs during I3C treatment. Comparing WT to IEC-specific AhR knockout mice (AhRΔIEC), the results showed that AhR expression was essential in IECs for I3C-mediated protection during colitis. AhR-deficiency also impaired mucin protein expression, particularly mucin 2 (Muc2), independently of IL-22. Collectively, this report highlights the important role of AhR in direct regulation of Muc2. These results provide justification for future studies aimed at determining how AhR might regulate select mucins through mechanisms such as direct transcription binding to enhance production.


Assuntos
Colite , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Mucina-2/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Interleucina 22 , Colite/genética , Mucinas/genética , Camundongos Endogâmicos C57BL
6.
J Leukoc Biol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366630

RESUMO

FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.

7.
Front Endocrinol (Lausanne) ; 14: 1261781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144564

RESUMO

Introduction: Endometriosis is a painful disease that affects around 5% of women of reproductive age. In endometriosis, ectopic endometrial cells or seeded endometrial debris grow in abnormal locations including the peritoneal cavity. Common manifestations of endometriosis include dyspareunia, dysmenorrhea, chronic pelvic pain and often infertility and symptomatic relief or surgical removal are mainstays of treatment. Endometriosis both promotes and responds to estrogen imbalance, leading to intestinal bacterial estrobolome dysregulation and a subsequent induction of inflammation. Methods: In the current study, we investigated the linkage between gut dysbiosis and immune metabolic response in endometriotic mice. Ovariectomized BALB/c mice received intraperitoneal transplantation of endometrial tissue from OVX donors (OVX+END). Control groups included naïve mice (Naïve), naïve mice that received endometrial transplants (Naive+END) and OVX mice that received the vehicle (OVX+VEH). Colonic content was collected 2 weeks post-transplantation for 16s rRNA pyrosequencing and peritoneal fluid was collected to determine the phenotype of inflammatory cells by flow cytometry. Results: We noted a significant increase in the number of peritoneal fluid cells, specifically, T cells, natural killer (NK) cells, and NKT cells in OVX+END mice. Phylogenetic taxonomy analysis showed significant dysbiosis in OVX+END mice, with an increase in abundance of Phylum Tenericutes, Class Mollicutes, Order Aneroplasmatales, and Genus Aneroplasma, and a decrease in Order Clostridiales, and Genus Dehalobacterium, when compared to OVX+VEH controls. The metabolomic profile showed an increase in some tricarboxylic acid cycle (TCA)-related metabolites accompanied by a reduction in short-chain fatty acids (SCFA) such as butyric acid in OVX+END mice. Additionally, the mitochondrial and ATP production of immune cells was enforced to a maximal rate in OVX+END mice when compared to OVX+VEH mice. Conclusion: The current study demonstrates that endometriosis alters the gut microbiota and associated immune metabolism.


Assuntos
Endometriose , Humanos , Feminino , Camundongos , Animais , Disbiose , RNA Ribossômico 16S , Filogenia , Camundongos Endogâmicos BALB C
8.
Nutrients ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960320

RESUMO

Previously, we showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) ligand and a potent and persistent toxicant and carcinogenic agent, induces high levels of murine myeloid-derived suppressor cell (MDSC) when injected into mice. In the current study, we demonstrate that Resveratrol (3,4,5-trihydroxy-trans-stilbene; RSV), an AhR antagonist, reduces TCDD-mediated MDSC induction. RSV decreased the number of MDSCs induced by TCDD in mice but also mitigated the immunosuppressive function of TCDD-induced MDSCs. TCDD caused a decrease in F4/80+ macrophages and an increase in CD11C+ dendritic cells, while RSV reversed these effects. TCDD caused upregulation in CXCR2, a critical molecule involved in TCDD-mediated induction of MDSCs, and Arginase-1 (ARG-1), involved in the immunosuppressive functions of MDSCs, while RSV reversed this effect. Transcriptome analysis of Gr1+ MDSCs showed an increased gene expression profile involved in the metabolic pathways in mice exposed to TCDD while RSV-treated mice showed a decrease in such pathways. The bio-energetic profile of these cells showed that RSV treatment decreased the energetic demands induced by TCDD. Overall, the data demonstrated that RSV decreased TCDD-induced MDSC induction and function by altering the dynamics of various myeloid cell populations involving their numbers, phenotype, and immunosuppressive potency. Because MDSCs play a critical role in tumor growth and metastasis, our studies also support the potential use of RSV to attenuate the immunosuppressive properties of MDSC.


Assuntos
Células Supressoras Mieloides , Dibenzodioxinas Policloradas , Camundongos , Animais , Dibenzodioxinas Policloradas/toxicidade , Resveratrol/farmacologia , Células Supressoras Mieloides/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Células Mieloides/metabolismo , Fenótipo
9.
Front Toxicol ; 5: 1268293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854252

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant found widely across the world. While animal and human studies have shown that exposure to TCDD may cause significant alterations in the reproductive tract, the effect of TCDD on the expression of miRNA in the reproductive organs has not been previously tested. In the current study, we exposed adult female or male mice to TCDD or vehicle and bred them to study the impact on reproduction. The data showed that while TCDD treatment of females caused no significant change in litter size, it did alter the survival of the pups. Also, TCDD exposure of either the male or female mice led to an increase in the gestational period. While TCDD did not alter the gross morphology of the ovaries and testes, it induced significant alterations in the miRNA expression. The ovaries showed the differential expression of 426 miRNAs, of which 315 miRNAs were upregulated and 111 miRNA that were downregulated after TCDD exposure when compared to the vehicle controls. In the testes, TCDD caused the differential expression of 433 miRNAs, with 247 miRNAs upregulated and 186 miRNAs downregulated. Pathway analysis showed that several of these dysregulated miRNAs targeted reproductive functions. The current study suggests that the reproductive toxicity of TCDD may result from alterations in the miRNA expression in the reproductive organs. Because miRNAs also represent one of the epigenetic pathways of gene expression, our studies suggest that the transgenerational toxicity of TCDD may also result from dysregulation in the miRNAs.

10.
ACS Infect Dis ; 9(9): 1769-1782, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535907

RESUMO

We report facially amphiphilic bile acid-based antimicrobials with a broad spectrum of activity against both bacterial and fungal pathogens and negligible detrimental effects on mammalian cells. Two lead compounds eliminated dormant subpopulations of various bacterial species, unlike conventional antibiotics. The lead compounds were also effective in eradicating biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Additionally, these compounds substantially inhibited the formation of fungal biofilms (C. albicans). Mechanistic investigations revealed the membrane-active nature and endogenous reactive oxygen species (ROS) induction ability of these compounds. Finally, no detectable resistance was developed by the bacterial strains against this class of membrane-targeting antimicrobials.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Ácidos e Sais Biliares/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Biofilmes , Candida albicans , Bactérias , Mamíferos
11.
Biomaterials ; 301: 122275, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619264

RESUMO

Inspired by the facial amphiphilic nature and antimicrobial efficacy of many antimicrobial peptides, this work reported facial amphiphilic bicyclic naphthoic acid derivatives with different ratios of charges to rings that were installed onto side chains of poly(glycidyl methacrylate). Six quaternary ammonium-charged (QAC) polymers were prepared to investigate the structure-activity relationship. These QAC polymers displayed potent antibacterial activity against various multi-drug resistant (MDR) gram-negative pathogens such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymers demonstrated low hemolysis and high antimicrobial selectivity. Additionally, they were able to eradicate established biofilms and kill metabolically inactive dormant cells. The membrane permeabilization and depolarization results indicated a mechanism of action through membrane disruption. Two lead polymers showed no resistance from MDR-P. aeruginosa and MDR-K. pneumoniae. These facial amphiphiles are potentially a new class of potent antimicrobial agents to tackle the antimicrobial resistance for both planktonic and biofilm-related infections.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Biofilmes , Escherichia coli
12.
Adv Healthc Mater ; 12(31): e2301764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565371

RESUMO

Among multiple approaches to combating antimicrobial resistance, a combination therapy of existing antibiotics with bacterial membrane-perturbing agents is promising. A viable platform of metallopolymers as adjuvants in combination with traditional antibiotics is reported in this work to combat both planktonic and stationary cells of Gram-negative superbugs and their biofilms. Antibacterial efficacy, toxicity, antibiofilm activity, bacterial resistance propensity, and mechanisms of action of metallopolymer-antibiotic combinations are investigated. These metallopolymers exhibit 4-16-fold potentiation of antibiotics against Gram-negative bacteria with negligible toxicity toward mammalian cells. More importantly, the lead combinations (polymer-ceftazidime and polymer-rifampicin) eradicate preformed biofilms of MDR E. coli and P. aeruginosa, respectively. Further, ß-lactamase inhibition, outer membrane permeabilization, and membrane depolarization demonstrate synergy of these adjuvants with different antibiotics. Moreover, the membrane-active metallopolymers enable the antibiotics to circumvent bacterial resistance development. Altogether, the results indicate that such non-antibiotic adjuvants bear the promise to revitalize the efficacy of existing antibiotics to tackle Gram-negative bacterial infections.


Assuntos
Antibacterianos , Escherichia coli , Animais , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Polímeros/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Mamíferos
13.
J Immunol ; 210(12): 2016-2028, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163318

RESUMO

During endotoxin-induced acute lung injury (ALI), immune cell recruitment resulting from chemotaxis is mediated by CXC and CC chemokines and their receptors. In this study, we investigated the role of chemokines and their receptors in the regulation of myeloid cell populations in the circulation and the lungs of C57BL/6J mice exhibiting LPS-mediated ALI using single-cell RNA sequencing. During ALI, there was an increase in the myeloid cells, M1 macrophages, monocytes, neutrophils, and other granulocytes, whereas there was a decrease in the residential alveolar macrophages and M2 macrophages. Interestingly, LPS triggered the upregulation of CCL3, CCL4, CXCL2/3, and CXCL10 genes associated with cellular migration of various subsets of macrophages, neutrophils, and granulocytes. Furthermore, there was an increase in the frequency of myeloid cells expressing CCR1, CCR3, CCR5, and CXCR2 receptors during ALI. MicroRNA sequencing studies of vehicle versus LPS groups identified several dysregulated microRNAs targeting the upregulated chemokine genes. This study suggests that chemokine ligand-receptors interactions are responsible for myeloid cell heterogenicity and cellular recruitment to the lungs during ALI. The single-cell transcriptomics allowed for an in-depth assessment and characterization of myeloid cells involved in immune cell trafficking during ALI.


Assuntos
Lesão Pulmonar Aguda , Quimiotaxia , Animais , Camundongos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Pulmão , Quimiocinas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Células Mieloides , Receptores de Quimiocinas/genética
14.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047680

RESUMO

Inflammation is pathogenic to skin diseases, including atopic dermatitis (AD) and eczema. Treatment for AD remains mostly symptomatic with newer but costly options, tainted with adverse side effects. There is an unmet need for safe therapeutic and preventative strategies for AD. Resveratrol (R) is a natural compound known for its anti-inflammatory properties. However, animal and human R studies have yielded contrasting results. Mast cells (MCs) are innate immune skin-resident cells that initiate the development of inflammation and progression to overt disease. R's effects on MCs are also controversial. Using a human-like mouse model of AD development consisting of a single topical application of antigen ovalbumin (O) for 7 days, we previously established that the activation of MCs by a bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) initiated substantial skin remodeling compared to controls. Here, we show that daily R application normalized O-mediated epidermal thickening, ameliorated cell infiltration, and inhibited skin MC activation and chemokine expression. We unraveled R's multiple mechanisms of action, including decreased activation of the S1P-producing enzyme, sphingosine kinase 1 (SphK1), and of transcription factors Signal Transducer and Activator of Transcription 3 (Stat3) and NF-κBp65, involved in chemokine production. Thus, R may be poised for protection against MC-driven pathogenic skin inflammation.


Assuntos
Dermatite Atópica , NF-kappa B , Animais , Humanos , Camundongos , Quimiocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastócitos/metabolismo , NF-kappa B/metabolismo , Resveratrol/uso terapêutico , Esfingosina , Fator de Transcrição STAT3/metabolismo
15.
ACS Chem Biol ; 18(3): 508-517, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926816

RESUMO

Class III lanthipeptides are an emerging subclass of lanthipeptides, representing an underexplored trove of new natural products with potentially broad chemical diversity and important biological activity. Bioinformatic analysis of class III lanthipeptide biosynthetic gene cluster (BGC) distribution has revealed their high abundance in the phylum Firmicutes. Many of these clusters also feature methyltransferase (MT) genes, which likely encode uncommon class III lanthipeptides. However, two hurdles, silent BGCs and low-yielding pathways, have hindered the discovery of class III lanthipeptides from Firmicutes. Here, we report the design and construction of a biosynthetic pathway refactoring and heterologous overexpression strategy which seeks to overcome these hurdles, simultaneously activating and increasing the production of these Firmicutes class III lanthipeptides. Applying our strategy to MT-containing BGCs, we report the discovery of new class III lanthipeptides from Firmicutes bearing rare N,N-dimethylations. We reveal the importance of the first two amino acids in the N-terminus of the core peptide in controlling the MT dimethylation activity. Leveraging this feature, we engineer class III lanthipeptides to enable N,N-dimethylation, resulting in significantly increased antibacterial activity. Furthermore, the refactoring and heterologous overexpression strategy showcased in this study is potentially applicable to other ribosomally synthesized and post-translationally modified peptide BGCs from Firmicutes, unlocking the genetic potential of Firmicutes for producing peptide natural products.


Assuntos
Bacteriocinas , Produtos Biológicos , Bacteriocinas/genética , Bacteriocinas/química , Firmicutes/genética , Firmicutes/metabolismo , Peptídeos/química , Família Multigênica
16.
Front Pharmacol ; 14: 1106733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909201

RESUMO

Acute Respiratory Distress Syndrome (ARDS) is triggered by a variety of insults, such as bacterial and viral infections, including SARS-CoV-2, leading to high mortality. In the murine model of ARDS induced by Staphylococcal enterotoxin-B (SEB), our previous studies showed that while SEB triggered 100% mortality, treatment with Resveratrol (RES) completely prevented such mortality by attenuating inflammation in the lungs. In the current study, we investigated the metabolic profile of SEB-activated immune cells in the lungs following treatment with RES. RES-treated mice had higher expression of miR-100 in the lung mononuclear cells (MNCs), which targeted mTOR, leading to its decreased expression. Also, Single-cell RNA-seq (scRNA seq) unveiled the decreased expression of mTOR in a variety of immune cells in the lungs. There was also an increase in glycolytic and mitochondrial respiration in the cells from SEB + VEH group in comparison with SEB + RES group. Together these data suggested that RES alters the metabolic reprogramming of SEB-activated immune cells, through suppression of mTOR activation and its down- and upstream effects on energy metabolism. Also, miR-100 could serve as novel potential therapeutic molecule in the amelioration of ARDS.

17.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36993324

RESUMO

The trillions of microorganisms inhabiting the human gut are intricately linked to human health. At the species abundance level, correlational studies have connected specific bacterial taxa to various diseases. While the abundances of these bacteria in the gut serve as good indicators for disease progression, understanding the functional metabolites they produce is critical to decipher how these microbes influence human health. Here, we report a unique biosynthetic enzyme-guided disease correlation approach to uncover microbial functional metabolites as potential molecular mechanisms in human health. We directly connect the expression of gut microbial sulfonolipid (SoL) biosynthetic enzymes to inflammatory bowel disease (IBD) in patients, revealing a negative correlation. This correlation is then corroborated by targeted metabolomics, identifying that SoLs abundance is significantly decreased in IBD patient samples. We experimentally validate our analysis in a mouse model of IBD, showing that SoLs production is indeed decreased while inflammatory markers are increased in diseased mice. In support of this connection, we apply bioactive molecular networking to show that SoLs consistently contribute to the immunoregulatory activity of SoL-producing human microbes. We further reveal that sulfobacins A and B, two representative SoLs, primarily target Toll-like receptor 4 (TLR4) to mediate immunomodulatory activity through blocking TLR4's natural ligand lipopolysaccharide (LPS) binding to myeloid differentiation factor 2, leading to significant suppression of LPS-induced inflammation and macrophage M1 polarization. Together, these results suggest that SoLs mediate a protective effect against IBD through TLR4 signaling and showcase a widely applicable biosynthetic enzyme-guided disease correlation approach to directly link the biosynthesis of gut microbial functional metabolites to human health.

19.
mBio ; 14(2): e0313722, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36809070

RESUMO

Acute respiratory distress syndrome (ARDS) is triggered by a variety of insults, including bacterial and viral infections, and this leads to high mortality. While the role of the aryl hydrocarbon receptor (AhR) in mucosal immunity is being increasingly recognized, its function during ARDS is unclear. In the current study, we investigated the role of AhR in LPS-induced ARDS. AhR ligand, indole-3-carbinol (I3C), attenuated ARDS which was associated with a decrease in CD4+ RORγt +IL-17a+IL-22+ pathogenic Th17 cells, but not CD4+RORγt +IL-17a+IL-22- homeostatic Th 17 cells, in the lungs. AhR activation also led to a significant increase in CD4+IL-17a-IL-22+ Th22 cells. I3C-mediated Th22 cell expansion was dependent on the AhR expression on RORγt+ cells. AhR activation downregulated miR-29b-2-5p in immune cells from the lungs, which in turn downregulated RORc expression and upregulated IL-22. Collectively, the current study suggests that AhR activation can attenuate ARDS and may serve as a therapeutic modality by which to treat this complex disorder. IMPORTANCE Acute respiratory distress syndrome (ARDS) is a type of respiratory failure that is triggered by a variety of bacterial and viral infections, including the coronavirus SARS-CoV2. ARDS is associated with a hyperimmune response in the lungs that which is challenging to treat. Because of this difficulty, approximately 40% of patients with ARDS die. Thus, it is critical to understand the nature of the immune response that is functional in the lungs during ARDS as well as approaches by which to attenuate it. AhR is a transcription factor that is activated by a variety of endogenous and exogenous environmental chemicals as well as bacterial metabolites. While AhR has been shown to regulate inflammation, its role in ARDS is unclear. In the current study, we provide evidence that AhR activation can attenuate LPS-mediated ARDS through the activation of Th22 cells in the lungs, which are regulated through miR-29b-2-5p. Thus, AhR can be targeted to attenuate ARDS.


Assuntos
MicroRNAs , Receptores de Hidrocarboneto Arílico , Síndrome do Desconforto Respiratório , Humanos , Interleucina-17 , Lipopolissacarídeos , Pulmão/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Síndrome do Desconforto Respiratório/patologia , RNA Viral , SARS-CoV-2/metabolismo , Células Th17
20.
PNAS Nexus ; 2(1): pgac290, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712935

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, is an environmental contaminant that is known for mediating toxicity across generations. However, whether TCDD can induce multigenerational changes in the expression of microRNAs (miRs) has not been previously studied. In the current study, we investigated the effect of administration of TCDD in pregnant mice (F0) on gestational day 14, on the expression of miRs in the thymus of F0 and subsequent generations (F1 and F2). Of the 3200 miRs screened, 160 miRs were dysregulated similarly in F0, F1, and F2 generations, while 46 miRs were differentially altered in F0 to F2 generations. Pathway analysis revealed that the changes in miR signature profile mediated by TCDD affected the genes that regulate cell signaling, apoptosis, thymic atrophy, cancer, immunosuppression, and other physiological pathways. A significant number of miRs that showed altered expression exhibited dioxin response elements (DRE) on their promoters. Focusing on one such miR, namely miR-203 that expressed DREs and was induced across F0 to F2 by TCDD, promoter analysis showed that one of the DREs expressed by miR-203 was functional to TCDD-mediated upregulation. Also, the histone methylation status of H3K4me3 in the miR-203 promoter was significantly increased near the transcriptional start site in TCDD-treated thymocytes across F0 to F2 generations. Genome-wide chromatin immunoprecipitation sequencing study suggested that TCDD may cause alterations in histone methylation in certain genes across the three generations. Together, the current study demonstrates that gestational exposure to TCDD can alter the expression of miRs in F0 through direct activation of DREs as well as across F0, F1, and F2 generations through epigenetic pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA